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Introduction Next generation sequencing Experiments

Next generation sequencing Experiments

Background

I Human body: More bacterial cells inside (1014) than our own cells
(1013)

I A fact is: The key to understand the human condition lies in
understanding the human genome

I But this may be insufficient
→Sequencing the genomes of our own microbes is necessary too

I Both together can give more information than each alone

I Metagenomics: Obtain genomic information directly from
microbial communities in their natural habitats

I See ”A primer on metagenomics” [Wooley et al., 2010]
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Introduction Example: Human gut microbiome trial

Example: Human gut microbiome trial

I Yatsunenko et al. [2012] studied gut microbiomes of 531 individuals

I The cohort were healthy children and adults from the Amazonas of
Venezuela, rural Malawi and US metropolitan areas

I The main interest was to find out if there are differences between
age categories or between geographical areas

I The data were pre-processed with qiime software

I After the quality steps 1,093,740,274 Illumina reads remained

I These resulted after the otu-picking script and taxonomic
assignment in an OTU table with 11905 different taxa and
corresponding counts for the 531 individuals

I Mean Count per replicate is 1,935,000. But: There is one replicate
with a row sum of 1→ deleted in the following analysis

R. Scherer (Inst. of Biometry, MHH) ICSI 2013, Hannover 26. September 2013 3 / 18



Introduction Example: Human gut microbiome trial

Comparison of diversity

I There are several ways to identify possible differences between
age groups or geographical areas

I One solution may be the comparison of the diversity (here: Degree
of variation of bacterial species within human gut) between
defined groups

I This can be done using α-diversity measures like Shannon or
Simpson index

I Due to the multiple sample design (three geographical areas),
simultaneous confidence intervals or multiplicity adjusted p-values
for the differences between the diversity measures are needed

R. Scherer (Inst. of Biometry, MHH) ICSI 2013, Hannover 26. September 2013 4 / 18



Introduction Human gut microbiome trial I

Human gut microbiome trial

S.obs S.chao1 S.ACE shannon simpson

0

1000

2000

3000

0

1000

2000

3000

4000

5000

1000

2000

3000

4000

5000

0

1

2

3

4

5

0.00

0.25

0.50

0.75

1.00

A
 <

=
 3 yr

B
 3 −

 17 yr

C
 A

dults

N
A

A
 <

=
 3 yr

B
 3 −

 17 yr

C
 A

dults

N
A

A
 <

=
 3 yr

B
 3 −

 17 yr

C
 A

dults

N
A

A
 <

=
 3 yr

B
 3 −

 17 yr

C
 A

dults

N
A

A
 <

=
 3 yr

B
 3 −

 17 yr

C
 A

dults

N
A

AGE_CUTPOINTS

A
lp

ha
 D

iv
er

si
ty

 M
ea

su
re

COUNTRY

GAZ:Malawi

GAZ:United States of America

GAZ:Venezuela

Figure : Different α-diversity measures separated by age and geography
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Introduction α-diversity measures and related issues

α-diversity measures and related issues

Unequal variances

I The Simpson index ϕ
(D)
i = ∑

S
s=1 π2

is ,

as well as the Shannon index ϕ
(H)
i =−∑

S
s=1 πis log(πis) depend on the

probability vectors π̂i = π̂i1, ..., π̂iS ,

I π̂i represents the estimated probability of occurring for every
species s, s = 1, ...,S in sample i, i = 1, ...,k

I The corresponding variance estimators V̂ar(ϕ̂(D)) and V̂ar(ϕ̂(H))
mainly depend on the probabilities π̂i and number of species ni

I According to Rogers and Hsu [2001], one can not assume equal
variances across the samples
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Introduction α-diversity measures and related issues

α-diversity measures and related issues

Over-dispersion

I Species counts usually show over-dispersion

I Over-dispersion occurs, if the observed variance exceeds the
nominal variance of the postulated distribution

I Typically, species counts exhibit a high variation across replicates
and a high number of zero counts

I This indicates an over-dispersed distribution
I Idea: Nonparametric bootstrap methods

I Only based on observed data
I Take the over-dispersion into account
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

Asymptotic SCIs (AM)

I Rogers and Hsu [2001] and Fritsch and Hsu [1999] constructed SCIs
for the Shannon and Simpson index considering heterogeneous
variances

I Tukey-type SCIs for the Simpson index are constructed in the
following way

ϕ̂
(D)
i − ϕ̂

(D)
i ′ ±q2,1−α;M,R

√
V̂ar(ϕ̂

(D)
i ) + V̂ar(ϕ̂

(D)
i ′ ) (1)

with q2,1−α;M,R being a two-sided quantile from an M-variate
normal distribution with correlation matrix R.

I When estimating the simultaneous confidence intervals for the
Shannon index, ϕ̂(D) is replaced with ϕ̂(H) and V̂ar(ϕ̂(D)) with
V̂ar(ϕ̂(H))
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

Disadvantages of the asymptotic SCIs

I Rogers and Hsu [2001] and Fritsch and Hsu [1999] constructed
intervals under the assumption of multinomial distributed counts
without replicates

I The probability vector πi is the same for every replicate j, j = 1, ..., r

I If the data has replicates, the counts may be summed up for every
species inside every sample and the indices can then be
calculated on the resulting vectors

I This may lead to an underestimation of the variance

I Over-dispersion is not considered adequately
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

Two ways to calculate the diversity index

(a) Diversity estimation with an ANOVA model, treatment i

Replicate j Species
s = 1

... Species
s = S

Index Param. of interest

1 yi11 ... yi1S θ̂i1
2 yi21 ... yi2S θ̂i2
3 yi31 ... yi3S θ̂i3
r yir1 ... yirS θ̂ir

ANOVA model estimator θ̄i

(b) Diversity estimation on summend up counts, treatment i

Replicate j Species
s = 1

... Species
s = S

Param. of interest

1 yi11 ... yi1S
2 yi21 ... yi2S
3 yi31 ... yi3S
r yir1 ... yirS

∑
r
j=1 yi�1 ... yi�S θ̂i�
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

Asymptotic gaussian SCIs based on an ANOVA
model (AG)

I In case of replicated counts, θ̄i may estimated from an ANOVA
model according to method method (a)

I With θ̄i and the residuals ε̂ij = θ̂ij − θ̄i , the well-known Tukey-type
intervals [Tukey, 1953; Hothorn et al., 2008] can be constructed

θ̄i − θ̄i ′ ± t2,1−α;M,R,df =∑ ri−k σ̂

√
1
ri

+
1
ri ′

(2)

with variance

σ̂
2 = (

k

∑
i=1

ri

∑
j=1

)(ε̂ij − ε̄
2
i )/(

k

∑
i=1

ri −k)) (3)

and t2,1−α;M,R,df =∑ ri−k being a two-sided quantile from an M-variate
t−distribution with correlation matrix R.
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

tmax SCIs based on an ANOVA model (WY)

I Following method (a) compute the parameter of interest θ̂ij , i.e.
Simpson’s ϕ measure, for every replication j, j = 1, ..., r , separately.

I Bootstrap the estimated indices directly according to Westfall and
Young [1993]

1 Fit a linear model to the estimated indices θ̂ij resulting in θ̂i
2 Bootstrap the residuals ε̂ij unstratified
3 For every bootstrap step b, b = 1, ...,B build the test statistic

t∗ii ′ =
ε̄∗i − ε̄∗i ′√

((σ̂2
i ε̂ )∗/ni + (σ̂2

i′ ε̂ )∗/ni′)
. (4)

4 q1−α is the 1−α empirical quantile of the B values max(t∗ii ′).
5 The resulting simultaneous confidence intervals are constructed in the

following way

θ̄i − θ̄i ′ ±q1−α

√
(σ̂2

i /ni + σ̂2
i′/ni′), (5)

where σ̂2
i is the residual mean square for the ith treatment in the

ANOVA model
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

tmax SCIs based on summed up counts (TS)

1 Bootstrap the original data set in a row, stratified by the k levels of
treatments.

2 Estimate the group wise index of interest θ̂ ∗i� according to method
(b) for every bootstrap sample.

3 In every bootstrap sample, calculate the test statistic

t∗ii ′ =
(θ̂ ∗i� − θ̂ ∗i ′�)− (θ̂i�− θ̂i ′�)√

((σ̂2
θ̂i�

)∗+ (σ̂2
θ̂i′�

)∗)
(6)

with the variance estimators based on multinomial assumptions
4 q1−α is the 1−α empirical quantile of the B values max(t∗ii ′).
5 The resulting simultaneous confidence intervals are then

θ̂i�− θ̂i ′�±q1−α

√
(σ̂2

θ̂i�
+ σ̂2

θ̂i′�
), (7)
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Simultaneous confidence intervals Asymptotic SCIs with variance estimators considering heterogeneity

rank-perc SCIs based on summed up counts (PE)

I Bootstrap the original data set in a row, stratified by the k levels of
treatments.

I Estimate the group wise index of interest θ̂ ∗i� according to method
(b) for each bootstrap sample.

I Build differences of interest δm for all bootstrap samples
I Construct SCIs according to Besag et al. [1995]

1 Rank the differences seperately
2 Compute and store maximum of ranks for each bootstrap sample
3 Compute the 1−α quantile t∗ of the maximum ranks
4 Finally, the confidence limits are constructed for each elementary

parameter δm by taking
[
δ

[B+1−t∗]
m ;δ

[t∗]
m

]
, i.e. the B + 1− t∗th and t∗th

value from the ordered sample of the joint empirical distribution
obtained for δm.
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Results Simulation results

Simulation results

Figure : Simulation results for the
Shannon index

Figure : Simulation results for the
Simpson index
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Results Analysed example data set

Analysed example data set
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Figure : Example data results for the
Shannon index
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Figure : Example data results for the
Simpson index
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Software implementation

Software implementation

I The publication corresponding to today’s talk is Scherer and
Schaarschmidt [2013]

I All methods except for the asymptotic methods based on the
linear model are implemented in the R-package simboot

I The asymptotic method is implemented in the R-package
multcomp

I The bioconductor package phyloseq was used to import the
otu-table from qiime

I simboot is on github for bug reporting:
https://github.com/shearer/simboot

I A github homepage http://shearer.github.io/simboot/ with a tutorial
for sequence data is under development
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Software implementation
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