Simultaneous confidence intervals for comparing biodiversity indices estimated from metagenomic trials

Ralph Scherer

26. September 2013

Next generation sequencing Experiments

Background

- Human body: More bacterial cells inside (10¹⁴) than our own cells (10¹³)
- A fact is: The key to understand the human condition lies in understanding the human genome
- ▶ But this may be insufficient →Sequencing the genomes of our own microbes is necessary too
- Both together can give more information than each alone
- Metagenomics: Obtain genomic information directly from microbial communities in their natural habitats
- ▶ See "A primer on metagenomics" (Wooley et al., 2010)

Example: Human gut microbiome trial

- > Yatsunenko et al. (2012) studied gut microbiomes of 531 individuals
- The cohort were healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas
- The main interest was to find out if there are differences between age categories or between geographical areas
- ▶ The data were pre-processed with qiime software
- ▶ After the quality steps 1,093,740,274 Illumina reads remained
- These resulted after the otu-picking script and taxonomic assignment in an OTU table with 11905 different taxa and corresponding counts for the 531 individuals
- ► Mean Count per replicate is 1,935,000. But: There is one replicate with a row sum of 1 → deleted in the following analysis

Comparison of diversity

- There are several ways to identify possible differences between age groups or geographical areas
- One solution may be the comparison of the diversity (here: Degree of variation of bacterial species within human gut) between defined groups
- This can be done using α-diversity measures like Shannon or Simpson index
- Due to the multiple sample design (three geographical areas), simultaneous confidence intervals or multiplicity adjusted p-values for the differences between the diversity measures are needed

Human gut microbiome trial

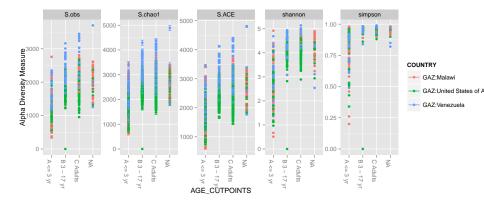


Figure : Different α -diversity measures separated by age and geography

α -diversity measures and related issues

Unequal variances

- ► The Simpson index $\varphi_i^{(D)} = \sum_{s=1}^{S} \pi_{is}^2$, as well as the Shannon index $\varphi_i^{(H)} = -\sum_{s=1}^{S} \pi_{is} \log(\pi_{is})$ depend on the probability vectors $\hat{\pi}_i = \hat{\pi}_{i1}, ..., \hat{\pi}_{is}$,
- ► $\hat{\pi}_i$ represents the estimated probability of occurring for every species s, s = 1, ..., S in sample i, i = 1, ..., k
- ► The corresponding variance estimators $Var(\hat{\varphi}^{(D)})$ and $Var(\hat{\varphi}^{(H)})$ mainly depend on the probabilities $\hat{\pi}_i$ and number of species n_i
- According to Rogers and Hsu (2001), one can not assume equal variances across the samples

α -diversity measures and related issues

Over-dispersion

- Species counts usually show over-dispersion
- Over-dispersion occurs, if the observed variance exceeds the nominal variance of the postulated distribution
- Typically, species counts exhibit a high variation across replicates and a high number of zero counts
- This indicates an over-dispersed distribution
- Idea: Nonparametric bootstrap methods
 - Only based on observed data
 - Take the over-dispersion into account

Asymptotic SCIs (AM)

- Rogers and Hsu (2001) and Fritsch and Hsu (1999) constructed SCIs for the Shannon and Simpson index considering heterogeneous variances
- Tukey-type SCIs for the Simpson index are constructed in the following way

$$\widehat{\varphi}_{i}^{(D)} - \widehat{\varphi}_{i'}^{(D)} \pm q_{2,1-\alpha;M,R} \sqrt{\widehat{Var}(\widehat{\varphi}_{i}^{(D)}) + \widehat{Var}(\widehat{\varphi}_{i'}^{(D)})}$$
(1)

with $q_{2,1-\alpha;M,R}$ being a two-sided quantile from an *M*-variate normal distribution with correlation matrix *R*.

▶ When estimating the simultaneous confidence intervals for the Shannon index, $\hat{\varphi}^{(D)}$ is replaced with $\hat{\varphi}^{(H)}$ and $\widehat{Var}(\hat{\varphi}^{(D)})$ with $\widehat{Var}(\hat{\varphi}^{(H)})$

MHH Medizinische Hochschule Hannover

Disadvantages of the asymptotic SCIs

- Rogers and Hsu (2001) and Fritsch and Hsu (1999) constructed intervals under the assumption of multinomial distributed counts without replicates
- ▶ The probability vector π_i is the same for every replicate j, j = 1, ..., r
- If the data has replicates, the counts may be summed up for every species inside every sample and the indices can then be calculated on the resulting vectors
- ▶ This may lead to an underestimation of the variance
- Over-dispersion is not considered adequately

Two ways to calculate the diversity index

(a) Diversity estimation with an ANOVA model, treatment i

Replicate j	Species $s = 1$		Species $s = S$	Index	Param. of interest	
1	<i>Y</i> _{i11}		Y _{i1S}	$\hat{\theta}_{i1}$		
2	<i>Y</i> _{<i>i</i>21}		Y _{i2S}	$\hat{ heta}_{i2}$ $\hat{ heta}_{i3}$ $\hat{ heta}_{ir}$		
3	<i>Yi</i> 31		Y _{i3S}	$\hat{\theta}_{i3}$		
r	Y _{ir1}		YirS	$\hat{\theta}_{ir}$		
ANOVA mod	del estimat	or			$ar{ heta}_i$	
(b) Dive	rsity estime	ation on s	ummend	up cour	nts, treatment i	
Developmente i			60		Devene of interest	
Replicate j	Species s — 1		•	ecies - S	Param. of interest	
Replicate J	s = 1		<i>s</i> =	- <i>S</i>	Param. or interest	
Replicate)	•		•	= S S	Param. or interest	
1	s = 1 Yi11		s = Yi1	= S s s	Param. or interest	
1 2	s = 1 Y_{i11} Y_{i21}		s = Yi1 Yi2	= S S S S	Param. or interest	
1 2	s = 1 Yi11 Yi21 Yi31	 	s = Yi1 Yi2 Yi3	= S s s s	$\hat{\theta}_{i}$. Mult	4

Asymptotic gaussian SCIs based on an ANOVA model (**AG**)

- ► In case of replicated counts, $\bar{\theta}_i$ may estimated from an ANOVA model according to method method (a)
- ▶ With $\bar{\theta}_i$ and the residuals $\hat{\varepsilon}_{ij} = \hat{\theta}_{ij} \bar{\theta}_i$, the well-known Tukey-type intervals (Tukey, 1953; Hothorn et al., 2008) can be constructed

$$\bar{\theta}_{i} - \bar{\theta}_{i'} \pm t_{2,1-\alpha;M,R,df=\Sigma r_{i}-k} \hat{\sigma} \sqrt{\frac{1}{r_{i}} + \frac{1}{r_{i'}}}$$
(2)

with variance

$$\hat{\sigma}^{2} = \left(\sum_{i=1}^{k} \sum_{j=1}^{r_{i}}\right) (\hat{\varepsilon}_{ij} - \bar{\varepsilon}_{i}^{2}) / \left(\sum_{i=1}^{k} r_{i} - k\right)$$
(3)

and $t_{2,1-\alpha;M,R,df=\sum r_i-k}$ being a two-sided quantile from an *M*-variate *t*-distribution with correlation matrix *R*.

t_{max} SCIs based on an ANOVA model (**WY**)

- Following method (a) compute the parameter of interest $\hat{\theta}_{ij}$, i.e. Simpson's φ measure, for every replication *j*, *j* = 1,...,*r*, separately.
- Bootstrap the estimated indices directly according to Westfall and Young (1993)
 - Fit a linear model to the estimated indices $\hat{\theta}_{ij}$ resulting in $\hat{\theta}_i$
 - 2 Bootstrap the residuals $\hat{\epsilon}_{ij}$ unstratified
 - So For every bootstrap step b, b = 1, ..., B build the test statistic

$$t_{ii'}^{*} = \frac{\bar{\varepsilon}_{i}^{*} - \bar{\varepsilon}_{i'}^{*}}{\sqrt{\left((\hat{\sigma}_{i\epsilon}^{2})^{*}/n_{i} + (\hat{\sigma}_{i'\epsilon}^{2})^{*}/n_{i'}\right)}}.$$
(4)

- (a) $q_{1-\alpha}$ is the $1-\alpha$ empirical quantile of the *B* values max $(t_{ii'}^*)$.
 - The resulting simultaneous confidence intervals are constructed in the following way

$$\bar{\theta}_{i} - \bar{\theta}_{i'} \pm q_{1-\alpha} \sqrt{(\hat{\sigma}_{i}^{2}/n_{i} + \hat{\sigma}_{i'}^{2}/n_{i'})}, \qquad (5)$$

where $\hat{\sigma}_i^2$ is the residual mean square for the *i*th treatment in the ANOVA model

t_{max} SCIs based on summed up counts (**TS**)

- Bootstrap the original data set in a row, stratified by the k levels of treatments.
- In every bootstrap sample, calculate the test statistic

$$t_{ii'}^{*} = \frac{(\hat{\theta}_{i.}^{*} - \hat{\theta}_{i'.}^{*}) - (\hat{\theta}_{i.} - \hat{\theta}_{i'.})}{\sqrt{((\hat{\sigma}_{\hat{\theta}_{i.}}^{2})^{*} + (\hat{\sigma}_{\hat{\theta}_{i'.}}^{2})^{*})}}$$
(6)

with the variance estimators based on multinomial assumptions

- (a) $q_{1-\alpha}$ is the $1-\alpha$ empirical quantile of the *B* values max($t_{ii'}^*$).
- The resulting simultaneous confidence intervals are then

$$\hat{\theta}_{j.} - \hat{\theta}_{j'.} \pm q_{1-\alpha} \sqrt{(\hat{\sigma}_{\hat{\theta}_{j.}}^2 + \hat{\sigma}_{\hat{\theta}_{j'.}}^2)}, \qquad (7)$$

Hannover

rank-perc SCIs based on summed up counts (PE)

- Bootstrap the original data set in a row, stratified by the k levels of treatments.
- ▶ Build differences of interest δ_m for all bootstrap samples
- Construct SCIs according to Besag et al. (1995)
 - Rank the differences seperately
 - Ocmpute and store maximum of ranks for each bootstrap sample
 - (a) Compute the 1α quantile t^* of the maximum ranks
 - Finally, the confidence limits are constructed for each elementary parameter δ_m by taking $\left[\delta_m^{[B+1-t^*]}; \delta_m^{[t^*]}\right]$, i.e. the $B+1-t^*$ th and t^* th value from the ordered sample of the joint empirical distribution obtained for δ_m .

Simulation results

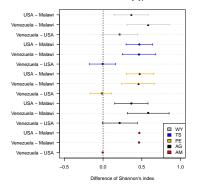
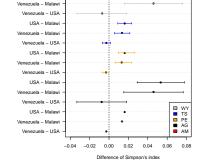

AM	AG	WY	TS	PE	AM	AG	WY	TS	PE
n(ij)=100; J(i)=5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		++ # ++ # ++ #	****		n(i))=100: J(i)=5 \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	*	+	***	
n(ij)=100; J(i)=20 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		+ + + ++ + + + ++ ++ ++ ++		* * *	n(i))=100; J(i)=20 % % % % % % % % % % % % % % % % % % %		*		
n(i))=1 (i))=5 (i) = 1 (i)			***	*	n(ij)=1000; J(i)=5 % % % % 7 % 7 % 1 + + + + + + + + + + + + + + + + + + +		*	***	***
n(i)=1000; J(i)=20 5 \$ \$ \$ 5 5 5 5 5 0 \$ \$ \$ \$ 5 5 5 5 5 0 \$ \$ \$ \$ \$ \$ 5 5 5 5 0 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			000 0000 0000 0000 0000 0000 0000 0000 0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000; -0(0)=00 01(0)=00 00 00 00 00 00 00 00 00 00		0000 0000 0000 000 000 000 000 000 000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Coverage probability		Coverage probability	Coverage probability	Coverage probability	Coverage probability				Coverage probability
		■ 1.01 ■ 2 ■			c	verdispersion:	1.01 🔳 2 🔲	5 🗆 10	

Figure : Simulation results for the Shannon index

Figure : Simulation results for the Simpson index


USA - Malawi

Analysed example data set

SCIs for Tukey type

Figure : Example data results for the Shannon index

SCIs for Tukey type

Figure : Example data results for the Simpson index

Software implementation

- The publication corresponding to today's talk is Scherer and Schaarschmidt (2013)
- All methods except for the asymptotic methods based on the linear model are implemented in the R-package *simboot*
- The asymptotic method is implemented in the R-package multcomp
- The bioconductor package *phyloseq* was used to import the otu-table from qiime
- simboot is on github for bug reporting: https://github.com/shearer/simboot
- A github homepage http://shearer.github.io/simboot/ with a tutorial for sequence data is under development

Literature I

- Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian Computation and Stochastic-Systems. Statistical Science, 10(1):3–41.
- Fritsch, K. S. and Hsu, J. C. (1999). Multiple comparison of entropies with application to dinosaur biodiversity. *Biometrics*, 55(4):1300–1305.
- Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50(3):346–63.
- Rogers, J. A. and Hsu, J. C. (2001). Multiple comparisons of biodiversity. *BIOMETRICAL JOURNAL*, 43(5):617–625.
- Scherer, R. and Schaarschmidt, F. (2013). Simultaneous confidence intervals for comparing biodiversity indices estimated from overdispersed count data. *Biometrical* ..., 55:246–263.
- Tukey, J. W. (1953). The problem of multiple comparisons.
- Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing. John Wiley & Sons.
- Wooley, J. C., Godzik, A., and Friedberg, I. (2010). A primer on metagenomics. PLoS computational biology, 6(2):e1000667.
- Yatsunenko, T., Rey, F. E., Manary, M. M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. a., Lauber, C., Clemente, J. C., Knights, D., Knight, R., and Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. *Nature*, 486(lvic):222–7.